The theoretical foundation of swarm intelligence algorithms is relatively weak, and a general theoretical analysis has not yet been conducted. Thus, this study proposes a high-performance generalized tangent-chaos (GTC) optimization algorithm based on the spatial domain. In the algorithm, characteristics of the generalized tangent method, chaos operator, and searching in the spatial domain are applied to enhance the global search ability and convergence speed. To verify the performance of the GTC optimization algorithm, it is compared with the nonlinearly decreasing weight PSO, artificial fish school algorithm, and real-coded genetic algorithm. Three well-known benchmark functions, the tuning of PID controller parameters, and the parameter estimation of a highly nonlinear system are utilized to test the ability of the GTC optimization algorithm. Results show that the proposed GTC optimization algorithm has excellent global optimization performance and convergence speed.
刘明, 华亮. 广义切线混沌优化算法及其应用[J]. 信息与控制, 2015, 44(5): 604-611,627.
LIU Ming, HUA Liang. Generalized Tangent-Chaos Optimization Algorithm and Its Application. Information and control, 2015, 44(5): 604-611,627.
朱海梅, 吴永萍. 一种高速收敛粒子群优化算法[J]. 控制与决策, 2010, 25(1):20-24. Zhu H M, Wu Y P. A PSO algorithm with high speed convergence[J]. Control and Decision, 2010, 25(1):20-24.
[4]
Draguna V, Frank L. Adaptive dynamic programming for online solution of a zero-sum differential game[J]. Journal of Control Theory and Applications, 2011, 9(3):353-360.
[9]
Li M W, Kang H G, Zhou P F, et al. Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm[J]. Journal of Systems Engineering and Electronics, 2013, 24(2):324-334.
[14]
Kao Y T, Erwie Z. A hybrid genetic algorithm and particle swarm optimization for multimodal functions[J]. Applied Soft Computing, 2008, 8(2):849-857.
[8]
施展, 陈庆伟, 胡维礼. 一类多目标量子行为粒子群优化算法收敛性分析及应用[J]. 信息与控制, 2013, 42(4):407-415. Shi Z, Cheng Q W, Hu W L. Convergence analysis of a class of multi-objective quantum-behaved particle swarm optimization algorithms and its application[J]. Information and Control, 2013, 42(4):407-415.
[18]
Gao Z, Liao X Z. Improved oustaloup approximation of fractional-order operators using adaptive chaotic particle swarm optimization[J]. Journal of Systems Engineering and Electronics, 2012, 23(1):145-153.
[2]
于战科, 黄华军, 倪明放, 等. 求QoS路由的整数线性规划方法[J]. 系统工程理论与实践, 2013, 33(4):1019-1023. Yu Z K, Huang H J, Ni M F, et al. A method of integer linear program for QoS routing problem[J]. Systems Engineering:Theory & Practice, 2013, 33(4):1019-1023.
[6]
Xiu C B, Guo F H. Wind speed prediction by chaotic operator network based on Kalman filter[J]. Science China Technological Sciences, 2013, 56(5):1169-1176.
[7]
Alfi A. PSO with adaptive mutation and inertia weight and its application in parameter estimation of dynamic systems[J]. Acta Automatica Sinica, 2011, 37(5):541-549.
[11]
孟祥萍, 片兆宇, 沈中玉, 等. 基于方向信息素协调的蚁群算法[J]. 控制与决策, 2013, 28(5):782-786. Meng X P, Pian Z Y, Shen Z Y, et al. An algorithm based on direction-coordinating[J]. Control and Decision, 2013, 28(5):782-786.
[12]
同济大学数学系. 高等数学[M]. 北京:高等教育出版社, 2007:178-181. University of Tongji-Mathematics Department. Higher mathematics[M]. Beijing:Higher Education Press, 2007, 178-181.
[16]
Sheng Y X, Pan H T, Xia L Y, et al. Hybrid chaos particle swarm optimization algorithm and application in benzene-toluene flash vaporization[J]. Journal of Zhejiang University of Technology, 2010, 38(3):319-322.
[17]
Li M S, Huang X Y, Liu H S, et al. Prediction of the gas solubility in polymers by a radial basis function neural network based on chaotic self-adaptive particle swarm optimization and a clustering method[J]. Journal of Applied Polymer Science, 2013, 130(5):3825-3832.
[19]
李丽, 牛奔. 粒子群优化算法[M]. 北京:冶金工业出版社, 2009:25-31. Li L, Niu B. Particle swarm optimization algorithm[M]. Beijing:Metallurgical Industry Press, 2007, 178-181.
[3]
Liu M L, Pu D G, Li X Q. An inexact line search SQP-filter method for nonlinear programming problems[J]. Mathematica Application, 2011, 24(3):532-539.
[20]
贺毅朝, 张翠军, 王培崇, 等. 微粒子群算法与郭涛算法在数值优化中的比较[J]. 计算机工程与应用, 2007, 43(11):100-103. He Y C, Zhang C J, Wang P C, et al. Comparison between particle swarm optimization and Guo Tao algorithm on function optimization problems[J]. Computer Engineering and Applications, 2007, 43(11):100-103.
[21]
修志芳. 预测函数控制及其应用研究[D]. 浙江:浙江大学, 2008. Xiu Z F. Research and application of predictive functional control[D]. Zhejiang:Zhejiang University, 2008.
[1]
Phan S H, Steve H. A review of the formulation and application of the spatial equilibrium[J]. Journal of Forestry Research, 2011, 22(4):671-679.
[5]
杨淑莹, 张桦. 群体智能与仿生计算Matlab技术实现[M]. 北京:电子工业出版社, 2012:1-12. Yang S Y, Zhang H. Matlab technology to implement the swarm intelligence and evolutionary computation[M]. Beijing:Publishing House of Electronics Industry, 2012, 1-12.
[10]
邓涛, 姚宏, 杜军. 多峰函数优化的免疫人工鱼群网络算法[J]. 系统工程与电子技术, 2013, 35(2):452-456. Deng T, Yao H, Du J. Immune artificial fish swarm network algorithm for multimodal function optimization[J]. Systems Engineering and Electronics, 2013, 35(2):452-456.
[15]
Lü X M, Huang K L, Guang Y. Optimizing strategy of system level fault diagnosis based on chaos particle swarm optimization[J]. Systems Engineering and Electronics, 2010, 32(1):217-220.