Compound Control Strategy for Manipulator Based on Adaptive Fuzzy Compensation
HU Lingmei1,2, CHEN Yang1, CHEN Junfeng3, LAN Ting2
1. College of Science & Technology, Ningbo University, Ningbo 315211, China;
2. Faculty of Electrial Engineering and Computer Science, Ningbo University, Ningbo 315211, China;
3. College of Internet of Things Engineering, HoHai University, Changzhou 213022, China
Abstract:In this paper, we propose an adaptive control scheme, based on the Lyapunov stability theory, for a manipulator in cases characterized by uncertainties such as friction and disturbance, which cause difficulties in the manipulator's tracking control. First, we compute the torque controller based on the nominal value of the manipulator. Next, we propose a fuzzy compensator to track friction. Then, we design a feedback controller based on the upper bound of the random perturbation to guarantee the system's stability. The simulation results for the robot manipulator's trajectory tracking in cases with uncertain friction and perturbation demonstrate the validity of the proposed compound control strategy.
胡灵美, 陈杨, 陈俊风, 蓝艇. 基于自适应模糊补偿的机械臂复合控制策略[J]. 信息与控制, 2016, 45(3): 342-347.
HU Lingmei, CHEN Yang, CHEN Junfeng, LAN Ting. Compound Control Strategy for Manipulator Based on Adaptive Fuzzy Compensation. Information and control, 2016, 45(3): 342-347.
杜佩君, 张瑞锋. 基于增广ESN的机器人轨迹跟踪控制[J]. 信息与控制, 2013, 42(4): 443-448. Du P J, Zhang R F. Trajectory tracking control for robots based on Augmented ESN[J]. Information and Control, 2013, 42(4): 443-448.
[4]
Liu H, Zhang T. Adaptive neural network finite-time control for uncertain robotic manipulators[J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 2014, 75(3): 363-377.
[6]
Zhu Q G, Chen Y, Wang H R. The RBF neural network control for the uncertain robotic manipulator[C]//Proceedings of the 2009 International Conference on Machine Learning and Cybernetics. Piscataway, NJ, USA: IEEE, 2009: 1266-1270.
[8]
席雷平, 陈自力, 齐晓慧. 基于非线性干扰观测器的机械臂自适应反演滑模控制[J]. 信息与控制, 2013, 42(4): 470-477. Xi L P, Chen Z L, Qi X H. Adaptive back stepping sliding mode control for robotic manipulator with nonlinear disturbance observer[J]. Information and Control, 2013, 42(4): 470-477.
[10]
Chen Y, Ma G, Lin S, et al. Adaptive fuzzy computed-torque control for robot manipulator with uncertain dynamics[J]. International Journal of Advanced Robotic Systems, 2012, 9(3): 1-9.
[12]
梁捷, 陈力. 空间机械臂关节运动的自适应模糊补偿控制[J]. 系统仿真学报, 2011, 23(3): 577-582. Liang J, Chen L. Fuzzy logic adaptive compensation control for space manipulator to track desired trajectory in joint space[J]. Journal of System Simulation, 2011, 23(3): 577-582.
[5]
刘建昌, 苗宇. 基于神经网络补偿的机械臂轨迹控制策略的研究[J]. 控制与决策, 2005, 20(7): 732-736. Liu J C, Miao Y. Research on trajectory control strategy of robot arm based on neural network compensation[J]. Control and Decision, 2005, 20(7): 732-736.
[13]
Yoo B K, Ham W C. Adaptive control of robot manipulator using fuzzy compensator[J]. IEEE Transactions on Fuzzy Systems, 2000, 8(2): 186-199.
[19]
刘强, 尔联洁, 刘金琨. 摩擦非线性环节的特性、建模与控制补偿综述[J]. 系统工程与电子技术, 2002, 24(11): 45-52. Liu Q, Er L J, Liu J K, Overview of characteristics, modeling and compensation of nonlinear friction in servo systems[J]. Systems Engineering and Electronics, 2002, 24(11): 45-52.
[3]
孙树栋. 工业机器人技术基础[M]. 西安: 西北工业大学出版社, 2006: 233-371. Sun S D. Technology base of industrial robots[M]. Xi'an: Northwestern Polytechnical University Press, 2006: 233-371.
[17]
于志刚, 沈永良, 宋中民. 机械臂鲁棒自适应运动控制[J]. 控制理论与应用, 2011, 28(7): 1021-1024. Yu Z G, Shen Y L, Song Z M. Robust adaptive motion control for manipulator[J]. Control Theory & Applications, 2011, 28(7): 1021-1024.
[1]
Yang H, Yu Y, Yuan Y, et al. Back-stepping control of two-link flexible manipulator based on an extended state observer[J]. Advances in Space Research, 2015, 56(10): 2312-2322.
[7]
乃永强, 李军. 基于极限学习机的机械臂自适应神经控制 [J]. 信息与控制, 2015, 44(3): 257-262. Nai Y Q, Li J. Adaptive neural control of manipulators based on extreme learning machine[J]. Information and Control, 2015, 44(3): 257-262.
[15]
Al-Dabbagh R D, Kinsheel A, Mekhilef S, et al. System identification and control of robot manipulator based on fuzzy adaptive differential evolution algorithm [J]. Advances in Engineering Software, 2014, 78: 60-66.
[18]
郭益深, 陈力. 具有外部扰动的空间刚性机械臂姿态与末端爪手协调运动的Terminal滑模控制算法设计[J]. 应用数学和力学, 2008, 29(5): 525-532. Guo Y S, Chen L. Terminal sliding mode control for coordinated motion of space rigid manipulator with external disturbance[J]. Applied Mathematics and Mechanics, 2008, 29(5): 525-532.
[9]
廖武, 钟宜生, 石宗英. 基于信号补偿的机械臂鲁棒控制器设计与实现[J]. 清华大学学报: 自然科学版, 2006, 46(4): 473-476. Liao W, Zhong Y S, Shi Z Y. Design and realization of robust manipulator controllers based on signal compensation[J]. Journal of Tsinghua University: Sciences & Technology, 2006, 46(4): 473-476.
[11]
倪骁骅, 刘青. 基于MIMO系统的机械手自适应模糊滑模控制[J]. 中国农机化学报, 2015(2): 265-268. Ni X H, Liu Q. Adaptive fuzzy sliding mode control for manipulator based on MIMO system[J]. Journal of Chinese Agricultural Mechanization, 2015, 36(2): 265-268.
[16]
Ghosh B B, Sarkar B K, Saha R. Realtime performance analysis of different combinations of fuzzy-PID and bias controllers for a two degree of freedom electrohydraulic parallel manipulator [J]. Robotics and Computer-Integrated Manufacturing, 2015, 34: 62-69.
[14]
Baghli F Z, bakkali L E, Lakhal Y. Multi-input multi-output fuzzy logic controller for complex system: Application on two-links manipulator[J]. Procedia Technology, 2015, 19: 607-614.