Abstract:In order to find more true Pareto optimal solutions and improve their uniformity of distribution,a multi-objective quantum particle swarm optimization algorithm based on quantum-behaved particle swarm optimization(QPSO) and adaptive grid(MOQPSO) is proposed.MOQPSO makes full use of the superiority of quantum-behaved particle swarm optimization to approximate the true Pareto optimal solutions quickly,and Gaussian mutation operator is introduced to enhance the diversity of searched solutions.MOQPSO reserves the found Pareto optimal solutions by setting an external memory,and then updates and maintains the optimal solutions based on adaptive grid,in order to guide the particle swarm finding the true Pareto optimal solutions finally by the leader particles from external memory.Simulation results denote that MOQPSO is of better convergence and more uniform distributing performance.
施展, 陈庆伟. 基于量子行为特性粒子群和自适应网格的多目标优化算法[J]. 信息与控制, 2011, 40(2): 214-220,226.
SHI Zhan, CHEN Qingwei . Multi-Objective Optimization Algorithm Based on Quantum-behaved Particle Swarm and Adaptive Grid. Information and control, 2011, 40(2): 214-220,226.
Pulido G T,Coello C A C.Using clustering technique to improve the performance of a multi-objective particle swarm optimizer[M]//Lecture Notes on Computer Science:vol.3102.2004:225-237.
[14]
沈佳宁.基于QPSO算法求解多目标优化问题及其应用[D]. 无锡:江南大学,2008.Shen J N.Solving multi-objective problem based on QPSO algorithm[D]. Wuxi:Southern Yangtze University,2008.
[18]
Zitzler E,Thiele L,Laumanns M,et al.Performance assessment of multiobjective optimizers:An analysis and review[J]. IEEE Transactions on Evolutionary Computation,2003,7(2):117-132.
[6]
Raquel C R,Jr Naval P C.An effective use of crowding distance in multiobjective particle swarm optimization[C]//Proceedings of the 2005 Workshops on Genetic and Evolutionary Computation.New York,NJ,USA:ACM,2005:257-264.
Zitzler E.Evolutionary algorithms for multiobjective optimization methods and applications[D]. Switzerland:Swiss Federal Institute of Technology,1999.
[3]
Coello C A C,Lechuga M S.MOPSO:A proposal for multiple objective particle swarm optimization[C]//Congress on Evolutionary Computation.Piscataway,NJ,USA:IEEE,2002:1051-1056.
[12]
孙俊.求解复杂问题的量子行为粒子群优化算法[D]. 无锡:江南大学,2008.Sun J.Quantum-behaved particle swarm optimization for complex problem solving[D]. Wuxi:Southern Yangtze University,2008.
[16]
Knowles J D,Corne D W.Approximating the nondominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation,2000,8(2):149-172.
[7]
Lechuga M S,Rowe J.Particle swarm optimization and fitness sharing to solve multi-objective optimization problems[C]//IEEE Congress on Evolutionary Computation.Piscataway,NJ,USA:IEEE,2005:1204-1211.
[4]
Coello C A C,Pulido G T,Lechuga M S.Handling multiple objectives with particle swarm optimization[J]. IEEE Transaction on Evolutionary Computation,2004,8(3):256-279.
[13]
Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks.Piscataway,NJ,USA:IEEE,1995:1942-1948.
[17]
Deb K,Thiele L,Laumanns M,et al.Scalable test problems for evolutionary multi-objective optimization[R]. Switzerland:Swiss Federal Institute of Technology,2001.
[2]
Sierra M R,Coello C A C.Multi-objective particle swarm optimizers:A survey of the state-of-the-art[J]. International Journal of Computational Intelligence Research,2006,2(3):287-308.
[8]
杨俊杰,周建中,方仍存,等.基于自适应网格的多目标粒子群优化算法[J]. 系统仿真学报,2008,20(21):5843-5847.Yang J J,Zhou J Z,Fang R C,et al.Multi-objective particle swarm optimization based on adaptive grid algorithms[J]. Journal of System Simulation,2008,20(21):5843-5847.
[9]
Yen G G,Leong W F.Dynamic multiple swarms in multiobjective particle swarm optimization[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part A:System and Humans,2009,39(4):890-911.
[10]
Li Z Y,Xu K,Liu S B,et al.Quantum multi-objective evolutionary algorithm with particle swarm optimization method[C] //4th International Conference on Natural Computation.Piscataway,NJ,USA:IEEE,2008:672-676.
[11]
Omkar S N,Khandelwal R,Ananth T V S,et al.Quantum behayed particle swarm optimization (QPSO) for multi-objective design optimization of composite structures[J]. Expert Systems with Applications.2009.36(8):11312-11322.
[1]
Deb K.Multi-objective optimization using evolutionary algorithms[M]. Chichester USA:Wiley,2001.